Printed electronics and its role in the development of battery-free sensors

Ye Tao, National Research Council Canada

Abstract: Printed Electronics is a promising technology that will enable the manufacturing of ubiquitous and low cost electronic devices, which covers from simple printed conducting lines, resistors, capacitors, to OLEDs, OFETs, OPV, and memory cells. More complicated electronic circuits can be formed using these basic building blocks to perform logic, sensing, human-machine interaction, and control functions. In this talk, I will introduce the research activities on the development of printed electronics under NRC’s Printable Electronics Flagship Program, and our recent work on the development of low power level electricity generators based on photovoltaic, piezoelectric, and triboelectric effects and their applications in wearable electronics and autonomous sensor systems.

Bio: Dr. Ye Tao is a Principal Research Officer in the Advanced Electronics and Photonics (AEP) Research Centre, National Research Council Canada (NRC). He received his PhD degree from École Polytechnique de Montréal in 1993, and became a research associate at NRC working on Si and III-V semiconductors. From 1995 to 1998, he pursued a post-doctoral career at ETH-Zurich on organic thin films and electronics. In late 1998, he returned to NRC to join a newly started organic electronics program. He is the leader of the Organic Materials and Devices group at AEP and the leader for the Functional Devices Thrust of NRC’s Printable Electronics Flagship Program. His research interest has been in the areas of organic semiconductor materials and devices, materials structure-property relationship, charge transport and recombination behaviour, surface and interface physics and chemistry.